

Гидромоторы

Содержание

Введение Обозначения Рабочая жидкость Технические характеристики Размеры Присоединение к редукторам Радиальные нагрузки Осевые нагрузки Аксессуары Установка

Ввеление

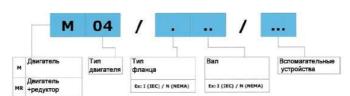
Гидродвигатели фирмы VAR-SPE новый и новаторский продукт, так как на рынке гидравлических двигателей отсутствует изделие, подобное ему и имеющее такие же технические рабочие характеристики! Это уникальный продукт, который не должен использоваться только для замены существующих двигателей. Преимущество состоит в том, что эти изделия могут использоваться там, где традиционные решения с оптимальными рабочими характеристиками не работают.

Фирма VAR-SPE предлагает новую альтернативу с двигателем серии M, которая обеспечивает значительно лучший КПД при низкой скорости и которая является оптимальным компромиссом между затратами и рабочими характеристиками.

Дополнительным преимуществом конструкции фирмы VAR-SPE является присущая ей способность выдерживать высокие осевые нагрузки без необходимости установки дополнительного дорогостоящего упорного подшипника или промежуточного вала, который обычно требуется установить в этих случаях применения.

Гидравлические двигатели приходят в качестве стандарта с монтажом IEC В5 или NEMA, так что их можно легко установить на стандартные промышленные коробки скоростей, которые обычно имеются в наличии, что позволяет уменьшить издержки на установку и техническое обслуживание. Эта комбинация обеспечивает высокий выходной крутящий момент, который традиционно относился к областям медленно работающих радиально-поршневых двигателей.

Уникальная конструкция позволяет резко уменьшить нагрузку на поверхности подшипников, так что позволяет работать при увеличенном давлении и уменьшенной объемной скорости потока. Это дает возможность выбрать двигатель, насос, резервуар меньших размеров и снижает необходимость охлаждения, что приводит к дальнейшей экономии затрат.


Решение VAR-SPE легче и более компактно.

Рабочие характеристики:

- · Гидравлические радиально-поршневые двигатели могут непрерывно работать с частотой вращения до 3000 об/мин и способны работать на более быстрых пиковых частотах вращения в течение коротких периодов времени.
- \cdot Возможность непрерывной работы при снижении частоты вращения до 20 об/мин, а без нагрузки и отсутствии прерывистого вращения до 5 10 об/мин
- Имеется в наличии 9 размеров, охватывающих диапазон производительности от 2,11 см3/об до 26,67 см3/об.
- \cdot Высокая объемная производительность вплоть до hV = 99,5%.
- · Высокое рабочее давление вплоть до 250 бар с высоким пиковым давлением вплоть до 300 бар.
- · Исключительно совершенная работа.
- Алюминиевый корпус легко рассеивает тепло, и он не будет ржаветь
- · Блок представляет собой стандартную установку IEC B5 или NEMA, которая используется на большинстве популярных промышленных коробок скоростей, которые используют стандартные электрические двигатели.
- · Вал способен выдерживать радиальную нагрузку и высокую осевую нагрузку.

Обозначения

Ниже показывается код для оформления заказа на гидравлические двигатели; важно определить устройство для регулирования количества жидкости, подаваемой за один ход.

Пример:

- двигатель типа 08, соединительный фланец и вал типа IEC,

- датчик скорости, код 8,
 цифровое измерительное устройство, код 8d,
 электронное регулировочное устройство, код Sr для управления пропорциональным электромагнитным клапаном

Рабочая жидкость

Для правильной работы двигателя рекомендуется использовать минеральное масло для гидравлических систем хорошего качества с присадками для использования при высокой температуре. В частности, для применений при высоких давлениях и высоких частотах вращения рекомендуется тип ESSO ATF (Dexron II). Информация о рабочей температуре контура имеет решающее значение для правильного выбора жидкости; оптимальная вязкость согласно данным в следующей таблице должна соответствовать следующим

	Наилучшая	Максимально допустимая	Минимально допустимая
Температура масла (C ^O)	+30°/+40°	+90°	-20°
Вязкость (SAE)	40 / 60	70	25

Технические характеристики

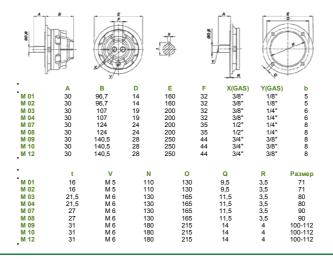
Эта таблица содержит технические характеристики гидравлических двигателей в зависимости от количества жидкости, подаваемой за один рабочий ход.

Размер				M01	M02	M03	M04	M07	M08	M09	M10	M12
Количество жидк подаваемое за од		c	см³/об (дюйм ³ /об)	2,1 (0,128)	3,3 (0,201)	4,0 (0,245)	5,9 (0,360)	9,2 (0,562)	12,3 (0,750)	15,2 (0,927)	19,9 (1,215)	26,6 (1,623)
Максимальное	постоянное	P _{nom}	бар (фунт/дюйм ²)					150 (2175)				
давление	пиковое	P _{max}	(ФУНТ/ДЮИМ-					300 (4351)				
	минимальная	\mathbf{V}_{\min}	об/мин					20				
Частота вращения	макс.постоянная	V _{nom}	об/мин		25	500				2000		
Бращония	пиковая	V _{max}	об/мин		40	000		30	00		2500	
Номинальный крутящий момент	постоянный (P _{nom})	M _{nom}	ньютон- метр (фунт-метр)	4,3 (3,14)	6,7 (4,93)	8,1 (5,98)	12,0 (8,82)	18,7 (13,8)	24,9 (18,4)	30,8 (22,7)	40,3 (29,8)	53,9 (39,8)
Стандартный крутящий момент	в % теоретиче мом	ского мента	крутящего					80-90				
Номинальный поток масла	постоянный	Q nom	литр/мин (галлонов США/мин)	5,38 (1,42)	8,4 (2,22)	10,22 (2,70)		18,94 (5,00)	25,24 (6,67)	31,1 (8,22)	40,6 (10,74)	54,4 (14,4)
Максимальная мощность	постоянная (1500 об/мин)	P _{nom}	кВт (л.с.)	0,7 (0,9)	1,1 (1,4)	1,3 (1,7)	1,9 (2,5)	3 (4)	4 (5,4)	4,8 (6,5)	6,3 (8,5)	8,5 (11,3)
Bec		W	кг (фунт)	2,9 (6,4)	3 (6,6)	4,3 (9,5)	4,4 (9,7)	7,1 (15,6)	7,3 (16)	12 (26,5)	12,2 (26,9)	12,4 (27,3)

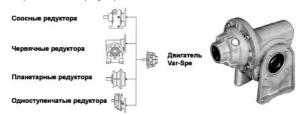
Пиковое давление до **300 бар (4350 фунтов на кв. дюйм)** обеспечивает непрерывность при запуске с нагрузкой.

Надёжность и высокая эффективность в течение 20000 часов рабочего применения

Для оценки рабочих характеристик двигателя, рассмотрим средние значения, которые показаны в таблице ниже; в случае специальных вариантов использования (частота вращения и давление близки к максимальным и минимальным указанным пределам), пожалуйста, контактируйте с нашим техническим отделом.


Объемная производительность, %	η,	9399
Средний механический кпд. %	η	85

Двигатели обеспечивают непрерывное отклонение и запуск при нагрузке; диаграмма, приведенная ниже,показывает давление в случае непрерывной работы в соответствии с ежедневными рабочими часами.


*

Размеры

Присоединение к редукторам

Гидравлические двигатели Var-Spe оборудованы SAE, стандартными фланцами IEC и NEMA, для непосредственного присоединения к редукторам.

Фирма Var-Spe также может обеспечить червячные редукторы и коаксиальные системы

Радиальные нагрузки

Допустимые радиальные нагрузки показаны в следующей таблице;[значения в N]:

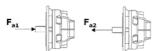
									F _r
M01	M02	M03	M04	M07	M08	M09	M10	M12	
380	380	500	500	800	800	1670	1670	1670	
									HILE

Радиальную нагрузку "F_r"можно определить по формуле:

$$F_r = \frac{2000 \cdot M_t \cdot K}{\emptyset}$$

гле

 M_t = момент сопротивления (Nm)


Ø = диаметр колеса (mm)

К = коэффициент, относящийся к варианту применения: К = 1, цепь К = 1,25, зубчатая передача

К = 1,5, трапецеидальный ремень К = 2,5, плоский ремень

Осевые нагрузки

Гидравлические двигатели VAR-SPE могут выдерживать даже высокие нагрузки. Показаны два возможных типа осевых нагрузок F_{a1} и F_{a2}

Г	F _{a1}	50 бар	100 бар	150 бар	
L	* a1	(725 фунтов на кв. дюйм)	(1450 фунтов на кв. дюйм)	(2175 фунтов на кв. дюйм)	
	M 01	950 [N]	1700 [N]	2500 [N]	
[M 02	950 [N]	1700 [N]	2500 [N]	
[M 03	1200 [N]	2200 [N]	3100 [N]	
	M 04	1200 [11]	2200 [N]	3100 [14]	
I	M 07	1900 [N]	3400 [N]	5000 [N]	
[80 M	1900 [14]	3400 [N]	3000 [14]	
I	M 09				
-[M 10	2700 [N]	4700 [N]	6800 [N]	
[M 12				

Осевые нагрузки типа F_{a2} можно определить при помощи соотношения: $F_{a2} = F_r / 5$ где F_r - радиальная нагрузка.

Аксессуары

Код 8 - Датчик скорости

Датчик скорости устанавливается непосредственно на корпус двигателя. Допускаются следующие варианты:

- Стандартный датчик: генератор. Он генерирует аналоговый сигнал 0-10 вольт переменного тока; Индуктивный датчик NAMUR. Он генерирует частоту, подходящую для получения хорошей точности на малой скорости.

Также в варианте (Ех)

- Индуктивный датчик с усилением. Он генерирует частоту, подходящую для получения хорошей точности на малой скорости при помощи одного или нескольких измерительных приборов, отображаемых из датчиков.

Код 8d - цифровое измерительное устройство

AD/9-36/V : присоединяется к коду 8 (стандарт NAMUR), этот измерительный прибор может использоваться

для считывания частоты вращения двигателя в об/мин. Кроме того, выходной аналоговый сигнал 0-10 вольт переменного тока допущен в качестве обратной связи для системы управления

AD/9-36/AV : версия с выходными аналоговыми сигналами 4-20 мА. Устройство может выводить на дисплей давление или момент сопротивления, когда оно присоединяется к датчику давления.

Специальный вал для насосов "моно"

Этот выходной просверленный вал дает возможность использовать сопротивление двигателя Var-Spe с высокими осевыми нагрузками, пропорциональными пусковому моменту. Смотрите данные для осевых нагрузок в <u>таблице</u>.

Гидравлические двигатели Var-Spe могут оборудоваться специальными подшипниками для работы с высокими радиальными нагрузками на выходном валу.

Код N - Валы и фланцы NEMA

Имеются в наличии валы и фланцы с размерами по американскому стандарту NEMA.

Размер	NEMA
M1 - M2	56C
M3 - M4	143TC
M7 - M8	145TC
M9 - M10	182TC
M12	184TC

Код О - Ортогонального соединительное устройство

Устройство для ортогонального соединения труб. На этом устройстве могут быть установлены датчики давления

	L (mm)
M 01	67
M 02	67
M 03	70
M 04	70
M 07	84
M 08	84
M 09	96
M 10	96
M 12	96

Установка РАМ

Фланцевая муфта двигателя с размерами UNEL-PAM, для использования насоса.

V-----

Все двигатели Var-Spe тестируются в индивидуальном порядке перед тем, как они высылаются клиентам. Они обеспечиваются закрывающимися заглушками для присоединения труб и смазывания внутри, чтобы обеспечить продолжительное хранение.

Чтобы гарантировать правильную работу и длительный срок службы двигателя, важно соблюдать следующие инструкции по монтажу и технические требования, связанные с установкой.

Рабочее попожение

Допускаются все рабочие положения. Для положения, в котором выходной вал направлен вперед, смотрите технические условия, относящиеся к дренажу.

Соединения		Вращение против часовой стрелке
A	Обратная линия	Напорная линия
В	Напорная линия	Обратная линия

Направление вращения определяется, если смотреть с передней стороны вала (смотрите направление, указанное стрелкой).

Дренаж

Дренажная труба всегдаприсоединяется, даже если имеется автоматическое дренажное устройство. В этом случае дренаж должен присоединяться только в том случае, если давление в обратном шланге выше давления, допускаемого корпусом (смотрите таблицу ниже).

···· (•···• · p····• · • • • · · · · · · · · ·						
Максим	Максимальное давление в корпусе					
обороты в минуту	бар	фунтов на кв. дюйм				
1000	2,5	36,25				
1500	2	29				
2000	1.5	21.75				

Специальные потшипники

Для того, чтобы гарантировать оптимальную работу и длительный срок службы для гидравлического двигателя Var- Spe, необходимо, чтобы степень загрязнения жидкости оставалась в пределах загрязнения, предусмотренных для данного класса в соответствии со стандартами ISO 4406. Поэтому, рекомендуется использование фильтров, с номинальными характеристиками, по крайней мере, 25 µm. Для работ при высоком давлении и скорости рекомендуются фильтры 10 µm.